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1. INTRODUCTION

'i-This is the final report on a 1 year study of methods of adaptively

cancelling scattered jP'ming. The results contained in this report are

relevant to interference scattered into the main beam of a radar or

communication system from terrain or chaff illuminated by a jammer.

These same techniques can be applied to jamming scattered into the side-

lobes or main beam of a receiving antenna from scatterers near the antenna,

i.e., the multipath problem, whicn is an important limitation in some

adaptive nulling systems.

The technique for cancelling scattered interference, utilizing /
delayed replicas of the jamming signal received by an auxiliary antenna,

is outlined in Section 2. In some applications of the scatter canceller

a large number of adaptive weights are required. 'This problem arises in

airborne radars when a jammer is illuminating a large area of terrain

or volume of chaff in the main beam. An efficien algorithm for weight

computation is required in these cases and is des ribed in Section 3.

Motion of the receiving antenna or jammer also complicates the problem

and leads to a requirement for rapid adaptive weight updating. A simula-

tion program, discussed in Section 4, was written to investigate the

performance of -the scatter canceller using the simple algorithm for

weight computation. This simulation includes the effects of motion of

the receiving antenna or jammer. Results of the simulation are contained

in Sections 4 and 5 of this report.

- -
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The conclusions of the study are contained in Section 6. Results

o." the simulation show that the simple weight updating algorithm provides

adaptive weights which converge quickly to raear-optimum values. In M-ot

cases of interest, the adaptive weights provide good scatter cancellation

when the receiving antenna or jammer are moving at typical aircraft

velocities.

•r
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2. CANCELLATION OF SCATTERED INTERFERENCE

Many future rad ý and communication systems will employ directirnil

receiving antennas with low sidelobes, plus adaptive systems for nulling

jamming received directly through the sidelobes. In these systems with

low vulnerability to direct sidelobe jamming, a second type of jamming

may limit performance, viz., jamming scattered into the main baam from

terrain or chaff. The problem is illustrated in Fig. 1, where the jamming

is scattered from chaff in the main beam. A similar problem arises in

airborne radars when airborne jammers are illuminating terrain in the main

beam. Angular nulling cannot be used to reject this type of interference,

since both the scattering medium and desired signal source (or target) are

in the main beam. The scattered jamming consists of a large number of

delayed replicas of the signal radiated by a jammer.

A similar problem arises in some systems due to scattering from

objects near the receiving antenna. A distributed array of scatterers

may reflect a set of delayed replicas of jamming into the antenna, either

through the sidelobes or main beam. This multipath effect is an important

limitation on the performance of sidelobe cancellers in some cases.

When the scatterer locations and system bandwidth are such that the

differential delays are the order of a reciprocal bandwidth or greater,

the technique discussed below can be used to improve canceller performance.

A method of cancelling the scattered jamming has been described

in earlier progress reports on this contract, and is illustrated in

Fig. 2. The jamming signal is scattered into the main beam with a total

*. delay of (RI+R 2 )/c, where c is the velocity of propagation. This delay
'p
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extends over a time interval which depends on the geometry and the extent

of the scattering medium. A replica of the jamming signal, delayed by

Rd/, is observed by a second auxiliary antenna located near the main

receiving antenna. A set of delayed replicas of this auxiliary signal is

adaptively weighted and subtracted from the main antenna output. The

spacing between taps is roughly the reciprocal of the jammer (or receiver)

bandwidth and the taps cover a delay interval corresponding to the extent

of (Rl+R2 -Rd)/c. When the jammirg is scattered into the main beam from

chaff or terrain which is far from the receiving antenna, an omnidirectional

auxiliary antenna can be used to obtain the jammer replica for scatter can-

cellation. The output of an omnidirectional auxiliary antenna will

generally have a direct line-of-sight jammer signal large compared to the

jammer scattered into the omnidirectional antenna. This ratio of direct

to scattered jamming components in the auxiliary antenna must be large

to achieve good scatter cancellation. When the scattering is via multipath

frmn objects near the antenna, the auxiliary antenna pattern must be

selected to assure that this ratio is large.

The output of the scatter canceller, Fig. 2, is

Z Y -W*E, 1

where W* denotes a row vector of the adaptive weights, E is a column.

vector of the top outputs En, and * denotes the conjugate transpose.

The jammer residue in the output is minimized when

W = S, (2)
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where M is the covariance of tap outputs EE* and S is the column vector

E- The scatter canceller is analogous to a multi-channel coherent

sidelobe canceller, where the tap outputs in Fig. 2 correspond to auxiliary

element outputs in a sidelobe canceller.

While a canceller for scattered jamming could be implemented with

an analog delay line as shown in Fig. 2, it is more likely that future

systems will use a digital implementation. Note that a radar or communica-

tion system using digihal sidelobe cancellation for nulling sidelobe

jamming has the necessary digital data available for main beam scatter

cancellation. The digital data from the main beam and auxiliary channel

can be combined as in Fig. 2 to implement scatter cancellation. Any of

the various algorithms used in sidelobe cancellers for weight computation

can be used in the scatter canceller.

!-
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3. COMPUTATION OF ADAPTIVE WEIGHTS

W;ien jamming is scattered into the main beam from a large area or

volume of scatterers, a large number of taps and adaptive weights may be

required. For example, in a system with a 1 MHz bandwidth, the spacing

between consecutive taps or samples must be no '4reater than I microsecond.

If the scdttering region extends over a-1O0 mile interval in delay, 600

or more adaptive weights are required.

A straightforward method of updating the weights is the estimation

of M and S inJEq. (2) from sample second moments of the received signals.

The weights can then be computed from Eq. (2) by solving a system of N

simultaneous Iinear equations, where N is the number of weights. For N

the order of 600, this is a foriidable computation. As discussed in

earlier reports, the true covariance matrix is Toeplitz, i.e., its elements

Mmn are the same along each diagonal where (m-n) is constant. Since this

matrix is alsO Hermitian, it is specified by only N numbers, e.g., the

elements of toe first row of the covariance matrix. For a Toeplltz matrix,
i2

the solution of Eq. (2) requires the order of N2 multiplications, while

For a general NxN matrix the order of N3 multiplications are required.

While the true covariance matrix of the tap outputs is strictly Toeplltz,

a sample covariance matrix is only approximately Toeplitz. It is not known

whether this Toeplitz assumption can be used to obtain sufficiently accurate

weights, or how many samples must be included in the sample matrix in

order to achieve good performance under this assumption.

In either case, with the order of N3 or N2 multiplications per

weight update, the weight computation problem is formidable when rapid
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updating and 600 or more weights ar-2 required. Thus it is important to

find a simple algorithm for weight upddting which minimizes the amount of

computation. One of the simplest algorithms for computing digital adaptive

weights is an iterative technique analogous to a multi-channel sidelobe

canceller. Let Ei denote a column vector of consecutive digitil samples,

corresponding to the tap outputs in Fig. 2 at the i th iteration. Also,

let Z denote the ith sample of the canceller output and W. a column

vector of the digital adaptive weights. The weight updating algorithm is

Wi+ = Wi - yZiEi* (3)

where Y is a constant. Both the convergence rate and weight jitter increase

as Y is increased. Note that only N complex multiplies (plus scaling by

the factor Y which can be a small constant, 2 "m) are required per iteration

to update the adaptive weights. An additional N complex multiplies per

input sample are required to form the output of Eq. (1). The weights can

be updated on every sample or every nth sample depending on convergence

rate requirements.

in the simulation, the weights are initially set to zero. The

program is written to simulate either a digital or an analog implementation.

In the analog case, the weight iteration equation is

Wi+l Wi - g(l-oc)ZiEi* (4)
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where

a e-

= time constant

g = gain

The parameters g and T are inputs to the program. For large -, (%I I and

Yof Eq. (3) is g/T. Large values of T, simulating a digital system,

were used in all of the simulation runs.



4. SIMULATION OF THE SCATTERED INTERFERENCE AND CANCELLER

The FORTRAN program for simulating scattered jamming and the scatter

canceller includes the following steps: simulation of the jamming signal,

specification of the field of scatterers, computation of the inputs to

the main beam and auxiliary channel, simulation of the adaptive weight

computer, evaluation of the canceller performance by plotting cancellation

ratio as a funution of time, computation of optimum weights and resulting

cancellation ratio, and optionally, simulation of doppler offset due to

motion.

The jammer signal in the simulation is represented by a series

of complex Gaussian samples with independent zero-mean quadrature components

of equal variance. The sample spacing is less than the reciprocal band-

width by a factor Is which is input to the program. A cosine frequency

spectrum is simulated in all of the examples contained in this report.

The method of generating the jammer'signal is discussed in detail in

Appendix B.

The scattering media of interest contain a large number of individual

scatterers per interval of I/B in (R1 +R2 - Rd)/c. Examples of scattering

media are chaff a- diffusely scattering terrain. The scattering process

is modeled, as several scatterers per delay interval of I/B, where the input

parameter, Is, to the program specifies this number. When there are a

large number of scatters of comparable magnitude per delay interval of

1/(B I s), each scatterer representing otie of these delay intervals has a

zero-mean Gaussian distribution in each quadrature component (from the
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Central Limit Theorem). The computer program presently includes two

options: complex Gaussian scattering coefficients selected randomly,

and unit amplitude scatterers with uniformly distributed random phasess.

The input to the auxiliary antenna via direct line of sight from

the jammer is obtained fromr the sequence of jammer samples. At one time,

the tap outputs are a set of these samples spaced I sahmples apart. The
s

main beam input is obtained by multiplying the individual jýmmer samples

by the corresponding scatterer coefficients and summing. Let JVnI denote
I I

a set of consecutive jammer samples, Ns the number of scatterers, and •j

the complex scatterer coefficients. The main beam inputs are ly ,I, where

Ns

Ym j=l V(I m + j)j" (5)
s

The corresponding tap outputs from the auxiliary channel, on the mth

sample for the nth tap, are

En(m) = Vn+i s (m-n)] , n = 1,2,... (6)

where n0 is selected so that the tap samples bracket the scattering

interval.

The canceller weights are set io zero at the beginning of each

simulation run and iterated as in Eq. (4) of the preceding section. The

measure of performance used in the pro ram is the cancellation ratio, i.e.,

the ratio of scattered jamming residue after cancellation to the power in

"the main beam output before cancellatioh. This cancellation ratio is

(

• I,

/



is plotted as a function of time to show the transient response of the

canceller. Each point on the curve is obtained by averaging the random

output powers over IAVE contiguous samples. When this parameter is

reduced, the fluctuations of the output are greater due to the random

variation of the output from sample to sample. With IAVE=l, the plot

shows the raw output of the canceller, which would be the input to the

rest of- the system.

The optimum weights and corresponding cancellation ratio depend

on the covariance matrix of the tap outputs and the v ector of cross

correlations between the main channel output and tap outputs. A sample

covariance matrix and correlation vector are computed for the input

data samples used in each simulation run. The optimum weights and

cancellation ratio based on these sample second moments are computed and

printed for each run. With a large number of input samples, these sample

matrix estimates are expected to clusely approximate the corresponding

theoretical weights and cancellation ratio. The cancellation ratio based

on a sample of inputs and tested against these same samples will be slightly

better than the theoretically optimum ratio based on the true covariance

matrix. Both the sample matrix tap weights and the weights at the end of

each simulation run are printed in the output. The sample matrix cancella-

tion ratio is shown in each output curve. This ratio is relevant for

comparison with the simulation curve of cancellation ratio versus time

in the zero dopplter (no motion) cases.

The results of one simulation run are shown i n Fig. 3. In this

example, the adaptive weights are iterated 480 times. The input samples
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are spaced by I/B, where B is the full zero-to-zero width of the cosine

spectrum of the jamming signal. Since this spectrum is strictly band-

limited and complex samples are obtained at intervals of I/B, there is

no limitation due to spectral aliasing. Thus, there is no limit to the

cancellation which can be achieved as the number of optimized tap weights

increases, since receiver noise is not included in the simulation. In

the example, 16 taps are used, centered on an interval of 10 tap spacings

which contain the scattering medium. There are 41 Gaussian scatterers

distributed evenly over the 10 intervals of 1/B in delay. The plots are

normalized so that the cance'lation is zero dB at the beginning of each

run. Each point on the curve is obtained by averaging the output power

over 30 samples, i.e., IAVE=30 in this example. The ratio of T/G is 50

in this example and the weights are iterated in accordance with Eq. (4).

The value of T for this example was 1000, so the simulation closely

approximates a digital system with a y of 1/50 in Eq. (3). Note that the

adaptive weights converge quickly to near-otpimum values. The output

residue of scattered jamming is reduced by 30 dB in about 350 iterations.

In a system with 1 MHz bandwidth, this corresponds to a convergence, time

of 0.35 milliseconds.

Since these results are obtained by simulation of the jamming

signal, the output residue and adaptive weights depend on the random

samples of jamming. The random ; imber seed used in generating the

jamming is shown in Figs. 3 and 4. The seed of the random number

generator is different in the two examples, which are otherwise identical.

Note that the detailed cancellation ratio vs. time curves are different
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in the two cases. However, the convergence rates and final cancellation

ratios are approximately the same, viz., 30 dB of cancellation after

350 iterations. The cancellation rttio achieved with optimum weights is,

shown in each case, 37.2 dB in Fig. 3 and 37.8 dB in Fig. 4. These ratios

are obtained from a sample covariance matrix of the input random samples.

The complex scatterer coefficients are also generated randomly

in the simulation. All parameters are the same in Figs. 4 and' 5 except

the random number seeds used in generating the scatterer coefficients.

Note that these two curves. differ in detail. Again, the results are

similar and roughly 30 dB of cancellation is obtained after 450 iterations.

The next series of 5 examples, Figs. 6 through 10, shows the

effects of the number of delay taps and adaptive weights on the cancella-

tion ratio. In each of these cases, 10 delay cells of width 1/B contain

scatterers. There are 41 scatterers evenly distributed over the 10 cells,

and the scatterer amplitudes and phases are identical in the 5 examples.

In Fig. 6 there are 10 taps which exactly cover the scattering region,

but no taps outside this region. The cancellation ratio computed from the

sample covaria.1ce matrix is only 16.9 dB in. Fig. 6. The cancellation

converges quickly to this level in the simulation. In Fig. 7, with 12

delay taps centered on the scattering region,_ the cancellation -ratio. is_-

-.27 dB. The addition of one extra tap on each side of the scatterer

delay interval increases the cancellation by about 10 dB. ,The next 3

examaples, with 16, 24 and 34 taps respectively centered on the scattering

interval, show the effect of tap number on cancellation. The c~ncellation

improves with increasing numberof extra taps. The additional taps with

adaptive weights improve the ability of the system to interpolate between
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tap samples and match the jamming waveforms reflected from scatterers

between tap points. Convergence to near optimum weights is somewhat

slower with a larger number of taps. This series 'of examples shows that,

with a cos ine frequency spectrum, the addition of 3 extra taps on each

side of the scatter delay interval improves the cancellation ratio

significantly. In Fig. 8, with 16 taps, the cancellation is -38 dB

compared with -17 dB in Fig. 6 with 10 taps. Further increase in the

numbe. of extr., taps is useful but yields less improvement.

In the simulation, the distributed scattering medium is represented

by a few random scatterers in each delay cell of width 1/B. The next

F~ries of 5 examples in Figs. 11 through 15 shows the effect of changing

the number of scatterers per cell on performance. In each of these

examples there are 12 delay taps spaced by 1/B. The T/G ratio is 50 and

the scatterers are distributed uniformly over 6 delay intervals of 1/B in

each case. In Fig. 11 there are 2 scatterers per cell with one of the

scatterers in eachi cell coincident in delay with an adaptively weighted

tap. Somewhat better performance would be expected in this case where

the scattered jamming sgnal from half of the scatterers can be cancelled

exactly. The optimum cancellation ratio based on i.he sample covariance

matrix is 33.9 dB in Fig. 11. The simulated performance approaches this

level of cancellation and some points on the curve show greater than

optimum cancellation. This is due to the random variation in noise

samples, where only 10 output noise samples are averaged to obtain each

point on the curve of Fig. 11. In Figs. 12 through 15, the number of

scatterers per cell are 3, 4, 5, and 6, respectively. With 3 and 4

scatterers per cell the optimum cancellation ratio is-28 dB. A smaller
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fraction of the scattered components are coincident with tap samples

and can be cancelled exactly than in Fig. 11. With 5 and 6 scatterers

per cell, in Figs. 14 and 15, the optimum cancellation ratio based on

a sample covariance matrix of all the input samples increases to 32 and

33 dB, respectively. One would expect less cancellation as the number

of scatterers per cell increases. This increase is small, however, ano

is probably due to the random variations in the jamming signal and

scattering coefficients discussed earlier. From this series of examples,

it appears that 4 scatterers/cell are sufficient to simulate distributed

scattering and 4/cell are used in the remaining simulations.

The simulation program includes the option of unit amplitude

scatters of random phase as well as the Rayleigh amplitude scatterers

(Gaussian quadrature components). One example using the unit amplitude

scatterers is shown in Fig. 16. In all other cases the Rayleigh scatterers

are used. Comparing Figs. 13 and 16, with Rayleigh and unit amplitLde

scatterers, respLtively, shows that the results are essentially the

same in the two cases.

The next series of 3 examples in Figs. 17 through 19 shows the

effect of varying the tap spacing. In each case there are 49 scatterers

uniformly distributed over 12 intervals of 1/B in delay. In the reference

case of Fig. 17 there are 18 taps centered on the scatterer delay interval

and spaced by I/B. In Fig. 18, there are 24 taps spaced by 3/4B and

covering the same delay interval of 18 intervals of 1/B. Oversampling

and increasing the number of adaptive weights in Fig. 18 does not

significantly change the performance of the scatter canceller. This

A
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Fig. 16 -- Simulation of Scatter Canceller with Unit Amplitude
Scatterers (4/cell)
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is to be expected since the jammer signal is strictly bandlimited to a

bandwidth B, so samples spaced by 1/B are sufficient for interpolation.

In Fig. 19, the sample spacing is increased to 5/4B and the 14 delay

taps cover approximately the same delay interval. "he cancellation ratio

is reduced drastically, to -7 dB, in this case. As expected, when the

sample spacing exceeds 1/B it is not possible to interpolate with sufficient

accuracy to replicate the jamming signals from scatterers which are not

colocated with tap samples. The sample spacing is 1/B in all of the

simulation runs except Figs. 17 and 19.

The next three examples illustrate the effect of the time constant

used in updating the adaptive weights, i.e., T/G of Eq. (4) or y-l of Eq. (i).

In each case there are 16 taps centered on 10 scattering intervals of

width 1/B. In Fig. 20, the T/G ratio is 10 and the adaptive weight

fluctuations are large. The cancellation ratio drops below 0 dB at 1000

iterations. With a T/G ratio of 25 in Fig. 21, the cancellation ratio

converges to nearly the optimum value of 37.7 dB after 300 iterations

and the fluctuations in output jammer residue are small. In Fig. 22,

with a T/G ratio of 100, convergence is slower. Approximately 1000

iterations are required to achieve near optimum cancellation.

The preceding examples show that the simple weight updating

algorithm (Eqs. (3) or (4)) yields rapid convercence of the adaptive

weights and cancellation of scattered jamming which approaches the

cancellation with optimum weights. It is not necessary to implement a

slower and/or much more costly weight computer utilizing the sample

covariance matrix for weight updating. These results were obtained with
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Fig. 17 -- Scatter Canceller - Samples Spaced by 1/1-

0.0000

24 Taps"49 Scats (4/ceuP)
T/G 40
DO0PP 0

-10.00- Sample Spacing- 3/4B

-30.0

-40.00
0. 00= 200.0 400.0 00.0 900.0 1000. 1200. 1400.

INTERVALS of 1I/

Fig. 18 -- Scatter Canceller - Samples Spaced by .75/B
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Fig. 19 -- Scatter Canceller - Samples Spaced by 1.25/B
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Fig, 20 -- Scatter Canceller with T/G = 10
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a cosine-frequency spectrum of the jamming. Convergence properties of

this weight updating algorithm may be different for other interference

spectra. It was also shown that 4 scatterers per interval of 1/B

suffice to represent distributed scatterers in the simulation and that a

sample spacing of 1/B is small enough to provide good scatter cancellation.

A T/G ratio of 25 appears to be a good choice of parameters in Fig. 4

for weight updating, since it yields rapid convergence without excessive

weight jitter.

The preceding examples havedealt with the stationary case, i.e.,

where there is no doppler offset due to motion. The next section contains

examples with motion where the optimum weights are continuously changing.

(

.I,

j , /
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5. EFFECT OF DOPPLER OFFSET DUE TO MOTION

In many situations where jamming is scattered into the receiving

beam of a radar or communication rystem, the jammer, scattering medium,

or receiving antenna may be moving. This causes a relative doppler

offset between the jamming signal received directly by the auxiliary

antenna and the scattered jamming entering the main receiving beam. In

Fig. 1, let

uu =d [(Rl+R2 -Rd)/c) (7)

When the main channel and auxiliary outputs are sampled at intervals of

I/B, the sample to sample phase shift in cycles due to this doppler offset

is

U- (8)

where A is the wavelength. This intersample phase shift is input to

the simulation program as the parameter DOPP. The velocity of a scatter-

ing chaff cloud will generally be low compared to the velocity of an

airborne jammer or airborne receiving antenna. A typical value for u due

to aircraft motion is between 100 and 300 meters/sec. Typical values of

wavelength range from .03 meters to 1 meter and typical bandwidth from

1 to 5 MHz. Table 1 shows the parameter DOPP for various combinations

of platform velocity, wavelength, and bandwidth. Note that DOPP is less

1.
/" , /

I ' /
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than .001 in most of the examples. In the worst case of maximum velocity,

minimum wavelength and low bandwidth, DOPP approaches .01.

Table I Typical Values of Intersample Phase Shift

u(meters/sec) (meters) B(MHz) DOPP(cycles),

100 .033 1 .003

100 .033 5 .0006

100 .1 1 .001

100 .1 5 .0002

100 1 1 .0001

100 1 5 .00002

300 .033 1 .009

300 .033 5 .002

"300 .1 1 .003

300 .1 5 .0006

300 1 1 .0003

300 1 5 .00006

The examples of Figs. 23 through 25 show the effect of motion on

the cancellation ratio as the parameter DOPP is increased. The parameters

in these three samples are the same as in Fig. 21, viz., 16 tap•,

10 intervals of I/B contain scatterers, and T/G = 25. With no mltion

(Fig. 21), the optimum cancellation ratio is 37.7 dB and the adaptive

system achieves 35 dB of cancellation after about 400 iterations. When

the motion parameter DOPP is increased from 0 to .0003 in Fig. 23 the

performance degradation due to mution is very small. Approximatel 32 dB

i
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of cancellation is obtained and the convergence rate is the same. In

Fig. 24, DOPP is .001 and the cancellation ratio is reduced to about

23 dB. With DOPP=.002 in Fig. 25, approximately 18 dB of scatter cancella-

tion is achieved.

The effect of motion on scatter cancellation for a larger system

with 35 delay taps is illustrated in Figs. 26 through 31. In each case,

25 delay intervals of-width 1/B contain scatterers, with 4 Rayleigh

scatterers per cell. Both the jamming samples and scatterer coefficients

are identical in the 6 examples, except for the doppler shift of the

jamming signals in the last 5 cases. The time constant used in weight

updating, T/G, is 25 in each case. With no motion in Fig. 26, thE optimum

cancellation ratio based on the sample covariance matrix is 38 dB. The

cancellation ratio in the simulation reaches 30 dB after roughly 400

weight iterations. A relative motion corresponding to a DOPP of l0-4

cycles per interval of 1/B, Fig. 27, yields a transient response almost

identical to that with no motion. In Fig. 28, with DOPP=.0003, the

adaptive system again achieves about 30 dB of cancellation. When DOPP

Sis increased to .001 in Fig. 29, the cancellation ratio is reduced to

about 23 dB. With a doppler offset of .002 samples per cycle, Fig. 30,

the cancellation ratio is-17 dB. In Fig. 31, with DOPP=.005, a value

larger than most of the typical cases of Table 1, the cancellation ratio

is only -3 dB.

These simulation results show that, for most typical doppler offsets

of Table 1, the simple weight updating algorithm for a scatter canceller

converges rapidly enough to follow the doppler rotation of weights. In

cases of higher doppler offset, there are possible modifications of the
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Fig. 23 -- Scatter Canceller with Motion - .0003 cycles/sample
(Compare Fig. 21.)
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Fig. 25 -- Scatter Canceller with Motion - .002 cycles/sample
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scatter canceller to permit doppler tracking. One possibility is to

try a set of different additive weight rotation rates to find one that

yields good cancellation. Since the weights converge in less than

I millisecond in most cases, the required search time would be small.

Another possiblity, which was discussed in an earlier report on this

contract, is the use of gradient technique which controls both the weights

and the weight rotation rate. When two or more moving interference~ sources

are illuminating the scattering region, however, a single weight rotation

rate will not provide the necessary compensation for motion. In these

cases, rapid convergence of the weights provide the best solution. It is

encouraging that, for most typical cases of interest, the simulation results

show that 20 dB or more cancellation can be achieved with the simple weight

updating algorithm of Eq. (4).
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Fig. 27 Scatter Canceller - DOPP = .0001
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Fig. 28 -- Scatter Canceller - DOPP = .0003
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6. CONCLUSIONS

Scattered jamming which enters the main beam of a radar or

communication system can limit the performance of future systems with

low sidelobe antennas. A method of adaptively cancelling scattered

interference has been described and simulated in detail. When the relative

delay between the scattering path and the direct LOS path to the receiving

antenna covers a large interval relative to the range resolution (or

reciprocal bandwidth) of the system, a large number of adaptive weights

are required in the scatter canceller. A simple algorithm for efficiently

computing the scatter canceller weights has been defined and simulated.

It was shown that the adaptive weights generated using this algorithm

converge quickly to values which provide a high level of scatter cancella-

tion. Using this method of weight computation, the adaptive system can

follow the doppler offset due to m(4tion of an airborne jammer or airborne

receiving antenna in most cases of interest.
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APPENDIX A

SIMULATION PROGRAMS

1. INTRODUCTION

The over-all simulation naturally divides into a few functional

blocks. Mainly because of the limited program storage (somewhat under 28K

words) of the DEC 11/23, it seemed wise to realize these functions as

separate programs. A second reason for this organization is that the early

segments of the simulation tend to be used very little compared to the finel

segment; the early segments produce intermediate date which are used over

and over with different parameters and in different combinations.

The organization of the simulation is depicted in Fig. A-1. Squares

represent functional program blocks, labeled With their names. The links

between blocks are labeled with the data files that communicate between

them. A few input parameters are also usually required for any segment;

these are described where the separate blocks are discussed. Generally,

all the pertinent parameters are reproduced and accumulated in successive

output files.

2. FILTER COEFFICIENTS FOR JAMMING GENERATOR

The zero-frequency, symmetrical bandpass jamming used in the simula-

tion is generated by filtering Gaussian white noise generated by subroutine

RAN3. The coefficients constituting the symmetrical impulse response of the

filter are computed by the programs CS.FTN or KO.FTN and output to a file

x.WTS. The program CS uses a cosine-squared spectrum; KO a cosine spectrum.

Either of these programs requires three inputs. The first input is a 4-

character label, denoted x, to identify the case and the two output files
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written. The other two are the parameters IS and DBTAIL. IS is the number

of samples per one-over-bandwidth time interval, 1/B, at which the jamming

will be generated. More than one sample per 1/B is used to enable simulation

of more than one random scatterer per 1/B interval. DBTAIL is the parameter

which determirnes what fraction of the jamming power is ignored by restricting

the filter impulse rerponse to a finite (symmetrical) interval. Usually

DBTAIL=-40 dB has been used. CS or KO determines how many coefficients

are required to insure the condition is met. The file x.CSQ is output by CS

and x.COS by KO. These files contain various running terms of the approxi-

mation and can be printed out to check on the program.

The main output of CS or KO is the file x.WTS containing the impulse

response coefficients for the filter. This file also contains, at the end,

the theoretical autocorrelation for the filter being realized, evaluated at

intervals of 1/(IS*B). These programs will ordinarily be used only once at

the start of a series of simulation runs.

3. JAMMING GENERATION

The program JAM generates a long file of jamming. Its inputs are the

file x.WTS and the parameters NSAM and NRON. NRDN is the number of times

to call RAN3 before starting; this allows the possibility of producing

different random jamming runs with the same parameters. NSAM is the number--

of samples of jamming desired. The jamming is generated and written in

blocks of 50 complex random samples, so the number of samples atually

produced is the nearest multiple of 50 greater than or equal to NSAM. This

jamming output is written to a binary file x.JAM. If a very long file is

written, its early segments can be used for shorter runs, but no provision

f/
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has been made for skipping any part of the jamming (easily added, however).

The first record of the file x.JAM contains the accumulated parameters so far

specified, as well as the filter coefficients used.

4. CKJAM

This program was used during early development to verify that the

coefficients used for the filter actually produced a random process having

the desired correlation function. It reads the first (parameter) record of

the file x.JAM and writes the file x.COR containing the autocorrelation

function actually produced by the truncated impulse response used for the

filter. This may be compared to the theoretical autocorrelation function

which was output to the files x.CSQ or x.COS by CS or KO for verification.

5. SCATTERER GENERATION

The two programs RANSC or GRANSC generate a block of random scatterers

for use by the simulation. Inputs required are a 4-character name, y, and

the parameters MINDEL, MAXDEL, INCR. MINDEL is the delay to the first

scatterer, MAXDEL is the delay to the last, or just beyond it, and INCR is

the delay increment, normally 1, between scatterers. Either program writes

an output file containing NSC,(ND(I),CR(I),I=,NSC) as I4/(2F8.3). NSC is

the number of scatterers produced; ND(I) and CR(I) are the delay, in samples,

and the complex reflection coefficient for the I-th scatterer.

Between them, the files x.JAM and y.REF provide the random jammer

outputs and the random band of scatterers required for the simulation. If

RANSC is used the CR(I) have random phase but unit magnitude. If GRANSC is

used the CR(1) are random complex Gaussian with unit expected magnitude

squared.
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6. THE SIMULATION PROPER

Several input parameters are required by the simulation and figure in

the input list at the start. They are:

RUN(l): the 4-character name, z, to use as a label on the output file,

z.SIM, and on a plut of cancellation ratio versus time.

FJAM(l): the 4-character identification, x, of the jamming file, x.JAM,

to use.

FREF(l): the 4-character identification of the file y.REF of reflectors

to use.

NT: the number of delay line taps to use in the canceller, hence the

the number of canceller feedback loops to mechanize.

NBSO: the number of extra delays of amount I/B to add to all the

scatterer delays, ND(I), in the file y.REF when they are used. The

taps always start at delay:O, so this permits the tap delays to

precede in time the first scattered jamming samples, if desired.

KQ: the sample spacing between delay line taps. Ordinarily it will

be the same as IS in Section 2.

LAPP: the number of sample steps to advance the whole process between

updates of the canceller loops. It too will ordinarily be the

same as IS.

IAVE: the number of output residues over which to average for the purpose

of estimating the residue power. This is the quantity plotted

versus time. If IAVE=l the raw power of each sample is plotted;

however, at present there is not enough variable storage to hold

a very long run if IAVE:l.
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INBLEN: the length of time to run the simulation,measured in units of 1/B.

INBDOP: the length of time to run tie simulation, in units of IE/, before

turning on the Doppler shift, if there is any.

POW: a previously obtained estimate (possibly) of the jamming power

in the file x.JAM. If the value entered as input is less than

or equal to zero then before the simulation starts, the simulation

program will read through the file x.JAM and estimate POW. If

a positive POW is given as input, this estimation phase will be

skipped and that POW used. The value of POW is used in any run

to scale the total scatterer jamming power to unity (by modifying

the reflection coefficients). This makes the theoretical in-

cancelled scattered jamming level 0 dB. TAU and GAIN are the

canceller loop time constants and gains.

* DOPP: the Doppler shift to superimpose on the scattered jamming, measured

in cycles per I/B, hence per IS samples.

After the simulation program has read in the first or parameter

record of the x.JAM file, it proceeds to fill a working buffer, H(1000),

w4th the complex jamming. A pointer (KS in the program) moves along this

buffer in steps of LAPP samples. The total scatter and the tap outputs move

along with this pointer. Fig. A-2 should help one to visualize the process.

When the pointer, KS, passes 1000 the upper 500 samples are shifted back to

the lower 500 H cells, a new set of 500 samples is read in to the upper 500

cells, or as much data as are available in the x.JAM file, the pointer is

decremented 500, and the simulation continues.

(.j
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At the end of the run the plotting routines are called. If some of

the arrays are to be enlarged, for example to allow long runs with IAVE=I,

this would be a good place to divide the program again and leave a separate

plotting program as the last step.

There are some other program outputs, including theoretic optimum

performance based on the sample covariances, which should be more or less

self-explanatory. The programs are extensively commented, so that most

questions which might arise should be answerable by examining the programs

themselves.

An attempt has been made to shortstop inconvenient parameter choices,

chiefly those that lead to array overflows, but absolute guarantees are

lacking.
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CS
or . x.CSQor

KO x.COS

x .WTS

jAM

x. AM CKJAM x.COR

RANSC
GRANSC y. REF SIM -- z.SIM

Fig. A-1 Organizatien of Simulation Programs and Files
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MIT taps, spaced LAPP samples
for the canceller loops

H: IJAI .ND(I) for KS- 1 ., s n

scatterers C. I'!SC) CPI()

SUM • Scattered jamming

Fig. A-2 Arrangement for Processing Datall
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PROCGRAM C:OýiL'.WT
CCc: Calculates an irnpulse resprjse for' Cosine-squared spectrum
CCC and writes a file suitable for input to a noise generator program.
CC:C: See statermer,t at 44 FORMAT for file contents.
CCC Weights truncated w.khere average tai 1 power is at least DSTAIL
CC:C dB down fr-or, average po,.,er of part used.

REAL TER(3'3) ,SUH_(.3),EMD(3'Q3),HEAD(S) ,FILE(2). OUE(3Q3),PRIN )
REAL CORF(607)DATA PI ,HEADFPR IN ( 2 / . 14 15926 1..... .Wc:; 6. SCE,'=-'T'OS. ,, WTS *,6*' ,* .CSC'"

DATA FILE(2) /- .WTS"/,LIARFPI/.7.,'5-_3982/
CALL DATE(HEAD(4))
CALL TIME(HEAD(7))

TYPE 40
40 FORMAT(" Enter FILE-NAME, I-PARAMETER, Dc-TAIL as IX,A4,I3,F6.@')
41 FORMAT( 1XA4, I3, F6..)

AC:CEPT 41, FILE(1 ) ,TcS,DE:TAIL
IF(DBETAIL.GT.3.)DD:TAIL=-DDTAIL IF FORGET MINUS
TYPE 41, FILE(1),IS,DETAIL ' VERIFY ON 'SCOPE.
PRIN(1 )=FILE( 1)
C• LL ASS ION (2, PRIN,G,'NEW
WRITE(2,42)1,29, FI LE(1HEAD)HEAD,2230' FOR IF-125 ONLY

42 FORMAT(/14A4)
WRI TE-(2-, 45)I1 ',o EirTAI L

45 FORMAT( 15X' M'7X TERM' 1(X' SLUM'9X'EMB" 4X' I=' 13, 5X *DETAIL= , F6. /)
FERR=10.**(DBTAIL/1I).
EYE=IS
U=2. *( ( . 5*EYE)**4) / (3. *FERR)
CALL ASSIGN(1,FILE,8,'NEW") ! MAY ND TO CHGE FOR 11/23.*
DO 1 I=1,3.3
EM=I
V=I. -(2. *EM/EYE)**2
IF(V)2,3, 2

1: 0= c IARF' I
GO TO 5

2 Q=CO.S(PI*EM/EYE)/V
5 QLIE(I)=

"rER( I ) =Q**2
S=S+TER ( I )*2.
SUM( I )=S
EMB( I )= (U/S) I*(./C.

1 IF(EM. GE.EME:(I ))C' TO 7
7 M=I

IF(M. GE. Z33)STOF 'CC'SQWT: DIMENSIONS 30Z TOO SMALL, ALSO 607
QUENUL=1./S CRT(S) ' Renorm so EClyl**2]=1..
DO 8 I=1M

a QUE( I )=QUE( I )*OUENUL
WRITE(2, 43) ( ITER(I) ,SLIM(I) EMB(I), I=1,M)

---- --- ------------.-------------------------.-----..-----
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43 FOPMAT( 116, 3F13.6)
CCC FILE(1) is case identifier. IS is parameter i.
CCC DBTAIL is rel mag of cut off tail, average power.
CCC: QUENUL is weight K-sub-zero. QUE(I) are rest of weights.

WRITE(1, 44)FILE(1), IS, DETAIL,M, QUENUL, (QUE(I),I=1,M)
44 FORMAT( 1XA4, I3,F6.0, 14, (F12.6))

L'=M+M+I ' Calculate correlation function at 1/(IS*B) steps.
DO 4 I=1,d
EM=I
EM=EM/E"/E
IF(I-IS)6, 4,6

6 COR(I)=SIN( (PI*EM) )/(F'I*EM)/(1.-(EM)**2)
4 CONTINUE

COR( IS)=. 5
.J=MINO (J,64) Cut printout to 64 values for now.
WRITE (1,46)(COR(I),I=1,J)

46 FORMAT(/ (8F 10.6))
CALL CLOSE(1)
STOP 'COSQWT '
END

COMPLEX FUNCTION RAN3(Il,12)
R1=RAN(11,12)
R2--RAN ( I I, 12)
A=6. 2931853*R2
RAN3--SQRT(-ALOG (R1 )*CMPLX (COS (A),•SIN (A))
RETURN
END
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PROORAM ,OWT
CCC Calculates an impuise response for Cosine spectrurm
CCC and w,,rites a file suitable for input to a noise generator proarar,.
CCC See statement at 44 FORMAT for file contents.
CCC Weights truncated wohere average tail po.wer is at least DE'RTAIL
CCC: dS do,,,n from average po,,,er, of part used.

REAL TER (23O3), SUM ( 303), EM-'(303.), HEAD(8), FILE(2), UE(3@3),F RIN( 2)
REAL COR(6'.7)

DATA PIHEAD, PRIN(2)/3.1415926, 'COS .. . , 6*' .COS"/
-DATA F I LE (2) /' .WT S/, C!IARP I/. 7S53.982/, Q0/3..E239114 /
CALL DATE(HEAD(4))
CALL TIME(HEAD(7))
TYPE 40

40 FORMAT(' Enter FILE-NAME, I-PARAMETER, DE--TAIL as IX. A4, 13, F6. 01
41 FORMAT(I XA4, I3, F6..0)

ACCEPT 41, FILE() ,IS, DBTAIL
IF(Dr.TAIL.OT.0.)DBTAIL=-DBTAIL ' IF FORGET MINUS
TYPE 41, FILE(l),IS,DBTAIL VERIFY ON 'SCOPE.
PRIN(1)=FILE(1)
CALL ASsIGN(2,PRIN,8, 'NEW'
WRITE(2,42)1,29,FILE(1),HEAD(3),HEAD,2,3(-) FOR IP-125 ONLY

42 FORMAT(/14A4)
WRITE(2, 45) IS, DBTAIL

45 FORMAT( 15X' M' 7X' TERM" lOX" SLIM-gx'EMr."4X" I='"- 15X'D1.3TAIL=, F6.O@/)
FERR=JO . ** (DBTAIL/1(). )

EYE=IS
U=(EYE**3) /FERR
S=Q0**2
CALL ASSIGN(1,FILE,8,"NEW") MAY ND TO CHGE FOR 11/23.
DO 1 1=1,303
EM=I
V-EM/EYE-. 25
IF(V)2,3,2

:4 Q=PI
G0 TO 5

2 Q=GAMMA(V)*SIN(PI*V)
5 QUE(I)=Q/GAMMA(V+l.5)

TER(I )=QLIE( I )**2
S=S+2. *TER( I)
SUM ( I )=S
EMB( I)=SQRT(U/S)

I IF(EM.CE.EMB(I))G0 TO 7
7 M=I

IF(M.SE.303)STOP "COOQWT: DIMENSIONS 303 TOO SMALL, ALSO 6.-07
S=1./SQRT (S)
QLENUL=Q0*S Renorm so E' 'yj**23=1 for symm impulse seq.
DO 8 I=I,M

8 QUE (I) =QUE ( I)*S
WRITE(2,43)(I,TER(I),SUM(I),EMI3(I),I=1,M)

43 FORMAT(I16,3F13.6)
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CCC FILE(l) is case identifier. IS is parameter i.
CCC DBTAIL is relI frna' of cut off tail1, average power.
CCC QUENIJL is we'tight K-sub-zc-ro. QUE(I) are rest of weights.

WRITE1, 44 )FILE (l) ,IS, DBTAIL, M, QUENLIL, (QUE (I), 1=1, M)
44 FORMAT(IXA4,I3,F6.C,I,4,(Fl2.6))

J=M+M+1 C~alculate correlation function at 1/(IS*B) steps.
J=MINC'(J432) Just enocugh to check.
I F(I S.GT. 1 ) COR ( I S/ 2) QLIARF'I
DO 4 I=1,J
EM=l
EM-EM/EYE
IF ( 21* I -IS) 6, 4, 6

6 COR(I)=COS( (PI*EI) )/(1..-(2A.*EM)**2)
4 CONTINUE

WRITE (1,46)(CQR(I), I1,J)
46 FORMAT(/(8FIC@.6))

CALL CLOSE(1
STOP 'KOWT'
END
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PROGRAM JAMOUT
t.CCC Inputs a toeight file and outputs filtered white noise.

CCC For now', weights are real, corr to a spectrum sumrm about zero freq.
CCC Generates nearest 50*N.OE.NSAM samples.

REAL HEAD (), CASE (2), Q(303), GUNK(2)
COMPLEX RAN3,WN(3E.03) ),CC,1BN(50)
DATA HEAD, CASE (2), GUNI:(2) /MAKE' JAM•,6*
CALL DATE(HEAD(4))
CALL TIME(HEAD(7))
TYPE 40

40 FORMAT(' Enter tot file name, number of samples, NRDN as 1XA4,216')
ACCEPT 41,CASE(1),NSAM,NRDN NRDN is number of pre-calls of RAN3.
TYPE 41,CASE(1),NSAMNRDN Echo on -scope.

41 FORMAT(1XA4,216)
CALL ASSION(1,CASE,8,'OLD-) MAY ND CHGE FOR 11/23.
READ(1,43)GLUNK(1),IS,DBTAIL,M,(Q(M+2-1),I=1,M+1) Reverse ordei

43 FORMAT(1XA4, 13,F6.Q), 14, (F12.6))
IF(M.GT.151)STOP 'JAMOUT: MORE WEIGHTS THAN ROOM; EXPAND Q, WN.
MP=2*M+ 1
DO 9 I=M+2,MP Produce symmetric impulse response.

9 Q(I)=Q(MP+1-I)
CALL CLCSE(1)
CALL ASSIGN(1.GUNK,8, NEW!') MAY ND CHOE FOR 11/23.

D WRITE(3,42)CASE(I),ISDBTAILNRDNNSAM,MP,(Q(I),I=I,MP)
D42 FORMAT( 1XA4, 13,F6. 0,316, (F12.6))

WRITE(1)CASE(I),ISDBTAIL,NRDN,NSAMMP,( Q (I), I=,MP)
: ~1 1=0

12=0
DO 1 I=I,NRDN I Initialize RAN3.
CC=RAN3(I1,I2)

I22=12 Save RAN3 start state.
DO 2 I=I,MP !Initial filling with white noise

2 WN(I)=RAN3(I1,12)
D QOW=O.
D WOW=O.
D DO 22 1=1,1000
D IF ( I. LE. MP) QOW=QOW+Q (I) **2
D22 WOW=WOW+CAB$ (RAN3 ( 11 , 12))**2

JAM=O Counts output.
NB=1 For BNs
NW=1 For WNs

D POW=O.
3 CC= (0. 0.)

DO 4 I=NW, MP Two sums unless NW=1
4 CC=CC+WN(I)*Q(I-NW+1)

IF(NW.EQ.1)O0 TO 6
KQ=MP+I-NW

DO 5 I=INW-1
5 CC=CC+WN( I)*Q(K÷+I)
6 BN(NB)=CC
1D POW=POW+REAL (CC)**2+AIMAG ( CC)**2

NB=NB+I
IF(NB.LE.50)0O TO 7 ! See if BN bin full.

V
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NB= 1
D WRRITE(3 44)PN
D44 FORMAT(6F12.6)

WRITE ( I ) E::N
JAM=JAM+5V.)
TYPE 41,CASE(1),NSAM .JIAM CRT progress report
IF(JAM.GE.NSAM)GO TO 8

7 WN(NW)=RAN(I11,I2) ' Replace oldest WN sample.
NW=NW+1 ' Update WN pointer.
IF(NW.GT.MF')NW--
GO TO 3

S CALL CLOSE(1)
D POW=POW/-JAM
D WCIW=WOW/ 100•
D TYPE 44,POW, WOW, QOW

STOP `JAM`
END

(

/
/
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PROGRAM RANREF
CCC: FillI MINDEL,MAXDEL with unit rfiag, randomn phase, comnplex ref I coeffs
CCC at steps of INCR and write file xxx.REF.

INTEGER ND(101)
COMPLEX CR(101)I
REAL FI(2)
DATA FI(2)/'.REF'/11,I2/0,0/
i'YPE 40

4A ~FORMAT( ' Enter f ile rname, MINDEL, MAXIDEL, and INCR as 1XA4, 314.)
ACCEPT 41, Fl(1) ,MINE1ELfMA, INCR

41 FORMAT(IXA4,3I4)
TYPE 41,FI(1),MINEEL,MA,INCR Verify on CRT.
DO 2 I=1,15

2 X=RAN (11, 12)
NSC=O

I NSC=NSC+1
X=RAN ( 11, 12) *6. 2831,853
CR (NSC) =CMPLX (COS ( X), S IN ( X))
ND (NSC) =(NSC- I ) * INCR+M I NtEL
I F(NSC. GT. 101 )STOP .'More s~catterers than space.'
IF(ND(NSC).LE.MA)GO TO 1
NSC=NSC-1 ! ack up one.
CALL ASSIC'N(1,FI,8,'NEW¼)
WRITE(1,42)NSC,(ND(I),C:R(I),I=1,NS.C) ' Eackscatter data.

4 2 FORMAT(I6/(I4,2F8. 3))
CALL CLOSE (1)
STOP 'RANREF'
.END
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PROG3RAM 1'RAREF
CU:: Fill wIINDEL,MAXDEL with Gaussian, random complex refi coeffs
C-CC at steps of INCR and write file xxx.REF.

INTEGER ND( 101)
COMPLEX C:R( 101 ) ,RAN3:-, Z
REAL F I I
DATA FI(2../ .REF-'/I1, 12/@,0/
TYPE 40

40 FORMAT( ' Enter f i ]c. nauee, MINDEL, MAXDEL, and INCR as 1XA4,3I4.'
ACCEPT 41,FI(1),MINDEL,MA,INCR

41 FORMAT(1XA4,3I4)
TYPE 41,FI(1),MINE'EL,MA,INC.R !Verify on CRT'.
DO 2 I=1,432

2Z=RAN3(I11, 12) Few cycles of RAN first
NSC=0,

1 NSC:=NSC+l
CR(NSC)=RAN3(I1, 12)
ND(NS;C)= (NSC-1 )*INCR+MINDEL
IF(NSC.GT.101)STOP 'More scatterers the~n space.'
IF(ND(NSC).LE.MAc)G: TO 1
NSC=NSC-1 ! Back up one.
CALL AS!S-IGN(1,FI,8, 'NEW--)
WRITE(1,42)NSC, (ND(I),CR(I),I=1,NSC) !Backscatter data.

42 FORMAT(I6/(I4,2F8.3))
CALL CLOSE(1)
STOP GRNE-
END
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PROGRAM SIMI
COMPLEX H(100 I ),C:R(10), CC, WST( 11), SMIN( 11), BE,•ROT, TURN

CCC: When change SMO dimensions, change lines marked !**.
CCC SVROT not used but takes no space.

COMPLEX SVRCOT(888),-;1S0(:36,3z7) *!*• EY* is SMO(,NT+1).
REAL BOTH(2664),RES(888)
REAL FJAM(2),FREF(2),Q(303) ,HEAD(8), RUN(8),OUT(50),SAM(2)
EOUIVALENCE (QSMO,DOTH,RES), (SVROT,E:OTH(889)) !**I

EQUIVALENCE (RLUN(4),FREF),(RUN(7),FJAM)
DATA HEADRLiN/'SIMI",7*. - R

• 2* ..... ' . JAM'/RES( 1 ) SAM ( 1 ) TWOPI /@.,) 0 .. , 6. 2831853/

DATA NDIM/36/ !**I

CCC H is segment of jarmimer output. H(1) is oldest; H(1000) newest.
CCC CR are complex ref] coeffs of scattevers. WST conjugate tap weights.
CCC ND(I) is I-th scatterer delay in samples along the H segment.
CCC It represents multiples of dt= 1/(IS*E). Expect all ND(I).GE.0
CCC NBSO is nr of 1/B to add to all back scatterer delays.
CCC All ND(I) increased by IS*NBS0.
CCC This allows first tap delay (zero) to precede jamming by that much.
CCC IAVE is nr samples averaged over for cancellation ratio estimate.
CCC DOPP phase shift is fraction of a cycle per l/B, hence per IS samples.
CCC INBDOP is number of lI/Bs to run before turn on Doppler.
CCC INBLEN is number of 1/Bs to '-un simulation.
CCC IT is nr of iterations (IT*LAPP/IS= nr of l/Bs); IT increments by IAVE.

INTEGER ND( 100)
LOGICAL*I MORE

.6 TYPE 40
40 FORMAT(/' Enter RUN name, JAM, REF files, NTNBSOKQ, LAPPIAVE,

.INBLEN, INBDOP'//' POWTAUGAINDOPP

.as 1X3A4,716/F1O.6,2FlO.•,Fl.6'

.//4X'FIRST change paper if plotting directly. ?? to quit.'/)
ACCEPT 41,RUN(1 ), FJAM(1 ) FREF( 1 ),NTNBSO, KQ, LAPP, IAVE, INBLEN,

INBDOPPOW, TAU, GAIN, DOPP
41 FORMAT( 1X3A4,7I 6/F 10. 6 2F10. 0, Fl1. 6)

IF(NT.GT.111)STOP 'More than 111 taps. Chge WST, SMIN dims.'
DECAY=EXP(- 1./TAUL)
DEL=( 1.-DECAY)*GAIN

CCC TALl is A-loop time constant in samples. GAIN is A-loop gain.
CCC NT is # of delay line taps. First tap always zero delay.
CCC IS (see JAMOUT) is number of samples per I/-:.
CCC KQ is number of samples per tap (Steps along H).
CCC LAPP is number of samples to step between Appýebaum updates.
CCC Normally IS=KQ=LAPP.
CCC I-th tap gets the sample H(KS-KQ*(I-1)).
CCC DOPPTC is Doppler averaging time constant in of I/Bs.
CCC POW is average power of beam output. If POW.LE.O., then
CCC entire .JAM file will be read and POW calculated.

CALL ASSIGN(1,FREFS)
CALL ASSIGN(3,RRUN,8)
CALL DATE(HEAD(4))
CALL TIME(HEAD(7))
WRITE(3, 43) HEAD, RUN

43 FORMAT(/1XSA4,6XSA4)
READ (1,42)NSC,(ND(I),CR(I),I 1,NSC)! Get back-scatterer data.

/
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42 FORMAT(I6/(14,2F8.3))
IF(NSC. GT.10c0)STOP' 'SIMI: MORE SC:AT THAN ROOM. EXPAND ND, CR.'
CALL CLOSE(1)
CALL ASS I ON ( 1, FJAM,. 3)
READ ( 1 ) CASE, I S, DSTA I L, NRDN, NSAM, MP, (Q ( I I = 1, MP)

CCr-* Impulse response read into 0 arra§ but not used. Q shared with SMO.
IAVE=MAXO(IAVE,IS/LAPP) Average at least over 1/r.
IAVE=MIN0J(IAVE, 50) Raise OUT(50) for more room.r
FINBLN=INBLEN
FIS=IS
S=TWOPI*1D1OPP/FIS Used as "per. sample'.
ROT=CMPLX(COS(S), SIN(S))
TYPE 411, DOPP, ROT

411 FORMAT(IXSF12.6)
TYPE 41, RUN( 1), FJAM ( 1), FREF( 1), NT, NBSO, KO, LAPP, I AVE, INBLEN, INE:DOP

.,POW,TAU,GAIN, DOPP ! Echo to verify.
IF(MP.GT.303)STOP 'SIMI: 0 ARRAY TOO SMALL`
DO 1 I=I,NSC Add IS*NBSO to all ND(I).
ND( I )=IS*NBSO+ND(I)
WRITE(3,42)NSC, (ND(I),CR(1),I=I,NSC) ! Note scatterer data.
WRITE(3, 44) IS, DBTAIL, NRDN, TAU, GAIN, NT, KQ, LAPP, IAVE, DOPP, INEDOP

44 FORMAT(/' IS=' 12,3X'DBTAIL= 'F4.0,3X'NRDN=1I5,3X
* 'TAU=F8. 0,3X * GAIN=-F5. 0, 3X' NT=' 14,3X'KO= 12,
./' LAPP='I2,2X** IAVF='I4,4Xt'rOPP="F9.6,4X'INBDOP=' 16)

MORE=.TRLIE.
MAXDEL=O
DO 4 I=1,NSC` Find max, scatterer delay.

4 MAXDEL=MAX@(MAXDEL,ND( I))
KS0=MAX0 (MAXDEL, KQ* (NT-I) )+1
KS=KS@ ! Leave enough "past" to serve all scatterers.
IF(KS.GT.501 )STOP 'SIMI: KS too big. Chge shift atter, stmnt S.

CCC KS points to current H sample.
SAMPS=O. Here to signal phase 1 skip
IF(POW.GT.0.)GO TO 14 ! Skip first phase.

ASSIGN 13 TO NOMORE
ASSIGN 3 TO INFULL

M=1
R2=0. 'Initialize for zero crossing count.
S2=0.
CROSS=0.
POW=0.
YY=@. Will contain I.Y**2.
SMOCNT=O. For SMO averages.
DO 30 1=1,2664 •*! Zero moment matrix.

30 BOTH(I)=0.
GO TO 12 for JAM input, phase 1

3 ASSIGN 6 TO INFULL
5 IF(KS.GT.KLIM)GO TO 8 Seek more janmmer output.
6 CC=(0. ,0. )

I
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DO 7 I=1,NSC:
-7 CC=CC+CR( I)*H(KS-ND( I))

S=REAL( C:C )*2+A I MAG (CC-) **2 Y
IF(MQD(L., IS) .NE. 0)G0 TO 29 Feed SMO at intervals of 1/B.

1r1O 27 I=1,NT !Accumrulate moments EY*.
27 SMO(I,NT+1)=SMO(I,NT+1)+H(KIS-KQ*(I-1))*CONJG(CC)

DO 28 I=1,NT ' Accumulate matrix of second moments.
riO 28 J=1,NT

28 SM(,)C:OIJ+(,-r*(-)*OJ((SK*J1)
YY=YY+S
SMOC:NT=SMOCNT+1.

29 POW=POW+S
S 1 - S.2 !Count zero. crossings f~ir bandwidth estimate.
R 1=R2
R2=S ION(. .125, REAL (H (KS))
S2=SIGN(. 125,AIMAG(H(KS))).
CROSS=CROSS+ABS (R2-R1I ) +ASS (S2-S )
SAMPS=SAMPS+1.
KS=KS+l
IF(SAMPS/FIS,GE.FIt4BLN)OO TO 13 ! Quit after INBLEN*IS samples.
00 TO 5 next sample, phase 1

8 IF(.NOT.MORE)GiO TO NrOMORE,(13,22) !Stop if reach end of file.
DO 9 I=1,500

9 H(I )H(I+5C00)) Shift last 500.
M= 11

*KS=KS-500 !Q Move pointer back 500 too.
- 12 DO 10 I=M,20 Fill H if possible.

K=50*1-50
10 READ(1,END=11)(H(K+J)*J=1,50)

KLIM=10002
0O TO INFULL,(3,6,21)

11 MORE=. FALSE.
KLIM=K 'KLIM is last cell filled.
GO TO INFULL,(3,6,21)

13 POW=POW/SAMPS
REWIND 1I Back to start of jam file.
READ(1) Skip first record.
MORE=. TRUE.
WRITE(3, 45 )SAMPS, POW
TYPE 45,SAMPS,POW

45 FORMAT(/F*8.0,,' samples, average power='F12.6)
CCC Calculate best possible cancellation ratio.

DO 34 I=1,2664 4*

34 BOTH(I)=BOTH(I)/SMOCNT
S=YY/SMOCNT 5Calc IY!**2 average.
SCA=I./SQRT(S) SScale to unit residue power.
CALL IIATV(SMO,NT,NDIM)
DO 32 I=1,NT
CC-(0.10.) Scratch
DO 33 J=1,NT

33 CC=CC+SMO( I,J)*SMO(J,NT+l)
(''32 WST(X)=CC*SCA '"Theoretic weights"
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WRITE(3,413) (WST(I) I=1 ,NT)
413 FORMAT(/' "Theoretical Weights"'//(1X6F12.4))

C:C:(O•,e). ) ! C:alc UU=(E*Y).inv(M).(EY*) average.
DO 31 I=INT

31 CC=CC+CONJG (SMO ( I , NT+I ) )*WST ( I)
CAN=I.-CC*SCA Real cancellation ratio.
OPT= 10. *ALOG 10 (CAN)
S=1. /SCA
S1=REAL (CC)
TYPE 412, SI, •, CAN, cOPT, SMOCNT
WRITE (3, 412) S1, S, CAN, OF-T, .MOCNT

412 FORMAT(/4X'IIUU:**2'5X';Y:**2'SX'CR'SX'CR(dB)'3X'SMOCNT'
•//1X2G12.4, F11.5, F9.1, F9. 0)

14 SCA=1./SQRT(POW)
DO 15 I=1$NSC Scale REF so power is 1.

15 CR(I)=CR(I)*SCA
CCC Initialize for simulation.

DO 16 I=1,NT
16 WST(I)=(0.,0.)

ASSIGN 22 TO NOMORE
ASSIGN 21 TO INFULL
KO=1 For OUTs
KR=O For RES(dB)
IT=O Iteration count (multiples of IAVE)

TURN=ROT Initialize for Doppler shifting.
KS=KS@
M=1
GO TO 12 for JAM input, phase 2

CCC Calculate current back-scatter.
21 BE=(O.,0.) "Beam"

DO 17 I=I,NSC
17 BE=BE+CR( I )*H (KS-ND( I))

IF(IT/IS.LT.INBDOP/LAPP)GO TO 26 ' Dopp after INBDOP 1/B steps.
TURN=TURN*ROT Cumulative phase shift
BE=BE*TURN Doppler shift beav,.

CCC Calculate current system output.
26 CC=BE Beam weight fixed at 1.

DO 18 I=INT
18 CC=CC-WST( I )*H(KS-KQ*( I-i))
CCC Save magnitudes for progress report.

OUT(KO)=REAL(CC)**2+AIMAG(CC)**2
25 KO=KO+1

IF(KO.LE.IAVE)GO TO 19 See if OUT bin full.
S=0. ' Average last IAVE residues.
DO 24 I=1,IAVE

24 S=S+OUT(I)
KR=KR+I
IF(KR.GT.888)STOP1$IMI: RES(888) used up; raise 888 or IAVE.'!**!
RES(KR)=10.*ALOG10(S/IAVE) ! and current residue.
TYPE 46. IT.RES(KR) ' Note Prooress on CRT.
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46 FORMAT(I6,Fe8. 1)
IT=; r+IAVE
IF(IT/IS. GE.INE:LEN/LAPP)GO TO 22 !Stop after INBLEN 1/B steps.
KO=1

19' DO 9-2) I=1,NT Caic current (U-star)*Bearn
20 SMIN(I)=CC*CONJG(H(KS-KC!*(I-1) )

DO 23 I=1,NT 'Update Weight-stars.
.23. WST( I)=DECAY*WST( I)+rIEL*SMIN( I)

KS=KS +LAFP ! Increment time..
IF(KS.GT.KLIM)GO TO 8 Need more jammner output.
00 TO 21 for next sample step

22 IF(SAMPS.GT.0.)CRBW=CROSS/SAMPS*FIS Cycles per 1/13
TYPE 47,CRB'W,IT,(WST(I),I=l,NT)
WRITE(3, 47)CRBW,IT,(WST(I),I=1,NT)

47 FORMAT(/' CREZW='F8.4,
.Cycles per 1/0'I12,P Iterations'SX'Final WST:'/(6F12.4))

CALL CLOSE(l1)
C:ALL IN'LOT(2,RUN(l)) Initialize plotter.
WRITE(2,49)3,3 Axis desci-.

49 FORMAT(-' PLI 4500 -1200LBINTERVALS of 1/B'A1, *PU-1200 4450 rIR0,1;
.L.1CANCELLATION (d13)'A1,'DR;')

WRITE (2, 48) HEAD, RUN, 3 !Head plot.
48 FORMAT(' PUE@ 1070@LB'8A4,16X9A4)

WR ITE (2, 414)COPT, 3
414 FORMAT(' PU 7600 9099 LBOptimum='F6.1,' dB'Al)

SAM (2) =FLOAT (LAPP) *FLOAT(I T) /.'IS !Number of intervals of 1/EB
CALL PLU73(KR,SAM, RES, -40.90.,0.$,1., ,-i,*';*, 0,';', 1,2)
CALL CLc'SE(2)
KRO=MAX 0( 1 ,KR-95) !Print last 96 residue averages.
WRITE(3,410)(RES(I),1=KR@,KR) Change KRO to 1 if want 'em all.

410 FORMAT(/1X12F6.1)
CALL CLOSE(3)
00 TO 2 !for next case, if any
END
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FUNCTION GAMMA(X)
CCC Uses recurrvnce foil by Hastings poly appro-: (Abrams & Segun, p. 257)
CCC Acc 6 or 7 dec for 1<X<2, dec lining twd vert asymptotes.
CCC Carn overflow for X near vert ayrmptote. No check.

REAL B(9) ! Compiler rounds B(I).
DATA B/. 03586E:343, -. 193527818, .4,82199394,-. 756704C0781, 9182ý ',57

., -. 897056937, . 988205891, -. 577191652, 1. /
Y-X
FAC- 1.

4 IF(Y)1, 2,3
I FAC=FAC/Y ! Recurrence for ner, arg.

.M=Y+ I.
GO TO 4

5Y-Y-I. Recurrence for arg > 1.
FAC=FAC*Y

.3 IF(Y.GT.1.)G00 TO 5
5=( 1)

DO 6 I-2,9 Series is for GAMMA(Y+1).
6 S-S*N'+B(I)

GAMMA-S*FAC/Y
RETURN

2 TYPE 40, X
40 FORMAT(' GAMMA FLINCTION: X='F12.6)

STOP -GAMMA'
END

SUBROUTINE MATV(A,N,NDIM)
COMPLEX A(NDIMNDIM)
DO 11 N1-1,N
DO 12 J=1,N
IF( W.EQ.NI) GO TO 12A (N, , ) =A (N 1J)/A f NI N1I

12 CONTINUE
DO 15 1=1,N
IF(I.EQ.N1) O0 TO 15
DO 16 J=1,N
IF(J.EQ. N1) 00 TO 16
A(I,J)=A(IXJ)-A(IN1)*A(N1,J)

16 CONTINUE
A(I,N1)=-A(IN1 )/A(N1,N1)

15 CONTINUE
A(NI,N1)=I./A(NIN1 )

11 CONTINUE
RETURN
END
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PROG'RAM CKJtA1
REA~L CA$E ( 22) , Q' 303) COR 603,6) WORD(2

1 TYPE 40
40 FORMAT(ý Enter JA~M f ile name as 1XA4. )

ACCEPT 4,CA'_-;E( 1)
CA~LL AS$E:.ICN( 1,i::A$-E, 83, C'OLD'

- TYPE ,WCRED(1)4S,EirDTOILNRDiNN$(T,MP,(C'!(I),I=1,MP)
4 FOiRMAT(lXA4.I3_7,FL-.E.O":36/(4ýF127ý./6))

IF(MP.c.T.303)-S'T0P 'C:K.'JAM: MP TOO P130. UIP C!, C:OR DIMENS'IONS.
CALL C:LCIE(1)
C:iALL ASS i0N ( 1,WO'RD,< NEW'
WRITE (1,4)WCORD(l),IS,DP.TAIL,NRDiN,NSAM,MF,(CO(I),I=1,MP)
DO 3 I--1,MP
ID=I-1

DO0 2 *J=1.MP-ID
2.=!-: +01( J) *'D ( J +I T-0

IF( I. ED. 1 ) T=S'
3 COR (I) =./T

J=MIN@'(MP,'_32) C::hange to reduce TTY~ list si:e.
WRITE (I, 46-)(C:CR( I),1=2., J)

CALL C;LOSE(1)
GO TO I
END
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SUBROUTINE GL73(O,N,F,DE,EN1,EN2, VS,VG )
DIMENSION Q(N)
IF(VS.LE. VC ) GOTCIS
S=VO
G=VS
GOT07

8 G=0(1)
S=Q ( 1 )
DO I I=2,N
G=AMAXI1(0 ( I), G)..

S=AMIN1 (Q0,I ), S)
IF(VS. GE. VGz)GOT07

S=AMAX 1 (S, VS )
G=AMINI (G, VG)

C PICKS ROUND NUMBER PLOT BOUNDARIES & AXIS POINTS TO MARK.
C PLOT RANGE WILL B:E FROM DE*EN1*F TO DE*EN2*F, WHERE
C F IS A POWER OF 10, EN1 AND EN2 ARE INTEGERS DIFFERING
C BY AT MOST 10, AND DE IS .2 .5 OR 1.
7 D=O-S

IF(D.GT.@. )GOTO2
IF(D.LT. 0.)STOP 'GL73: NO OVERLAP OF LIMITS AND PLOT DATA"
IF(D.E.O.@.)STOP '0L73: CANNOT SCALE. MAX-MIN."

2 T=ALOG10(D)
U=AINT(T)
I F (U. EQ. T) GOT03
IF(D. GE. 1. C)GOTO3

U=U-1.0
3 F=10.0**U
4 GSP=D/F ! SCALE RANGE TO 1, 10.

GP=O/F
SP=S/F ! F IS PWR OF 10 SCALE FACTOR.
DE=1 .0 NORMALIZED LABEL INTERVAL
IF(GSP. LT. 5. 0)DE=. 5 1.0 .5 OR .2
IF(GSP.LT. 2. 0)DE=. 2

T=AMAXI( ABS ( OP) , ABS ( SP )
EN2=AINT(GP/DE)
IF(GP.LT.O. )GOT05
IF(ABS((DE*EN2-ýP) /T) .GE. .0001 )EN2=EN2+1. ! FuZZY COMPARE

S GPP=EN24ýDE M' 1AX LABEL
ENI=AINT(SP/DE) !
IF(SP.OE. 0. ) OT06
IF(ABS((DE*EN1-'P) /T). GE.. •001 )ENI=EN1-1.

6 SPP=DE*ENI ! MIN LABEL
RETURN
END
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CCC 27-K;EF'- 33
C Plots c.'. ve of NPTS points described by EXIZ, WISE arrays.

° C WISE has NPTS values; EXIZ has 2 values: least anrd greatest.
C IF(HASW.E?!.0.) USES UP TO 11 AXIS LABELS;
C IF(HASW.NE.0.), USES EVERY OTHER IF MORE THAN 8.
C PARITY OF ENS DETERMINES IF TOP OR BOTTOM LABEL USED WHEN SKIPPING.
C EXPECTS PLOTTER'S P1,P2 IN IP73(4).
C NEWAX=O: ASSUMES SCALING DONE; ONLY PLOTS.
C NEWAX=1: SCALE, PLOT, LABEL AND TICK AXES.

C NEWAX=2: SCALE AND PLOT. OMIT AXIS STUFF.
C NEWAX=S: ASSUMES SCALING DONE. PLOTS CURVE. DOES AXIS STUFF.
C NEWAX=4: SCALE ONLY (US'a'EFLUL FOR FORCING SCALES).
C LINE IN RANGE -1 TO 6 PICKS PATTERN (HP PAGES 4-6,7).
C IF VS < VO, LIMITS PLOT TO VS < WISE < VG.
C IF VS > VG, FMCES PLOT RANGE TO INCLUDE VG TO VS'.
C IF PLCHR IS A PRINTING CHARACTER, IT WILL BE USED FOR A SYMBOL
C PLOT. ELSE GET LINE PLOT (SUGGEST ;). SEE HP PAGE 4-5.
C TO GET SYMBOL FLOT WITHOUT CONNECTING LINES, USE LINE= 0
C IF NLAB>0, LABELS WI 'CHLAB' EVERY NLAB POINTS, STARTING ABT NLAB/2.
C IF IPEN=2, USES PEN 2; ELSE PEN 1.
C IF ITIX=4, TICKS ALL 4 SIDES; ELSE TICKS ONLY LEFT AND BOTTOM.

SUBROUTINE PLU73 (NPTS,EX IZ,•WISE, VS, VG, ENS, HASW, NEWAX, LINE,
•PLCHR, NLAD, CHLAD, JPEN, JTI X)

DIMENSION EXIZ(2),WISE(NPTS)
REAL EN1(2),EN2(2),CX(2),CY(2) ,F(2),DE(2),A(2),B(2),ENZ(2)
COMMON /Q73/IP73(4)
DATA CX,CY/-4.,-9.,-2.,-.25/
DATA IP73/1250, 1250,9254,7000/
IPEN=2
IF(JPEN. NE. 2) IPEN=1
ITIX=4
IF(JTIX.NE. 4)ITIX=2

104 WRITE(2,405)IPEN,IP73 !INITIALIZE AND SET SCALE.
405 FORMAT(' IN;SP"I2, " P- 4I6,"SCe0,9999,0,9999FR;DR;")

JMP=NEWAX+ 1
GOTO(1@ 8,113,113, 108,113),JMP

113 WRITE(2,404) ! DRAW BOX.
404 FORMAT(' PUO,OPD•, 9999,9999,9999,9999,0, 0ý,OPUI)

CALL OL73(EXIZ,2,F(1),DE(1),EN1(1),EN2(1),0.,0.) GET X DIVS.
CALL GL73(WISENPTS,F%2),DE(2),EN1(2),EN2(2),VS,VO) ! GET Y DIVS.
DO 117 1=1,2 ! SCALE XY TO PLOT VARIABLES.
ENZ( I)=9999./(EN2(I )-ENI(I))
A(I)=ENZ(1)/(F(I)*DE(I))

117 B(I)=ENI(I )*ENZ(I)
EX(V)=V*A(1)-B(1) SCALING FUNCTIONS
EY(V) =V*A(2 ) -B(2)
EKS(I )=FLOAT ( I-1 )/FLOAT (NPTS-1)*(EX IZ(2)-EXIZ(1) ) +EXIZ(1)
I F (JMP. GE. 5) GOTO 107

108 WRITE(2, 416) 1P73, LINE,PLCHR ! BOUND; SET LINE PATTERN, PLOT MODE.
41'" FORMAT(' IW'416,'LT-'I4,'SM'A1)
CCLc IN SYMBOL MODE, USER RESPONSIBLE FOR DENSITY OF PLOTTED SYMBOLS.

WRITE(2,411)((EX(EKS(I)),EY(WISE(I)))$I=1,NPTS) ! PLOT CURVE.
7 411 FORMAT(' PU'2F8.1,"PD"'(1X2F8.1))

IF(NLAB.LE.0)GOTO111 ' LABEL CURVE WITH CHLAB IF NLAB>O.
DO 109 I=I,NPTS

109 IF(MOD(I+NLAB/2,NLAB).EQ.0)WRITE(2,412)EX(EKS(I)),EY(WISE(I))+
140.,CHLAB, 3
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4 12' FORMAT( 'PLP21F8. 1,' LB'Z'A1
III WRITE(:.-,414) 1!RESTORE LINE PLOTTING AND OPEN WINDOW.
414 FORMAT( F' P-;SM; IW' )

GOTO( 107, 112, 107,112, 107), JMP
C.CC:c: TICK AND LAB~EL AXES.
1 2 LN2d'

LL= 1

XX =0.

ZZ= 100.
DO 100 L4=1, ITIX
L=2-MOD(L4, 2)
N=EN2 (L) -EN 1 (L)
EN=EN1 (L)

1021 WR ITE (2, 406) E, LN SET BIG TICKS.
406 FORMAT(-* TL*213)

CIOTO ( 105, 106) , L
105 WRITE(2,-'407)(EN-EN1(1))*ENZ(1),YY !BIG X TICK.
407 FORMAT(' PU'2FS.1,'XT')

GO TO 101
106 WRITE(2$409)XX, (EN-EN1(2))*ENZ(2) BIG Y TICK.
409 FORMAT (' PUtYZF:.'- 1, 'YT-')
101 DT=.I

NL IL=9
IF(HASW. EQ. 0..CR.N. LE. 7)GOTOI1@)
DT=. 2
NLIL=4
IF(AMOD(EN-EN2( L)-ENS,2.).NE.0. )GOTO103

C OTHERWISE LABEL BIG TICK.
110 IF(L4.LE. 2)WRITE(2,408)C:X(L),C\'(L) ,EN*DE(L)*F(L) $3
408 FORMAT(' CP'21F6.2,';LB'c011.4,Al)
103 IF (EN. GE. EN2 (L) ) GOTO 11S

WR ITE (2, 406) 0, LL SET LIL TIX.
COTO ( It4, 115), L

114 WRI TE(2, 407) (( ( I*DT+EN-EN1I( 1)*ENZ ( I YY) , I=1, NLIL) ! LIL TIX.
IF(NLIL.EQ.9)WRITE(2,407)(5.*DT+EN-ENI(1))*ENZ(1),YY-ZZ ! LENGTHEN.
GO TO 116

115 WRI TE(2 $409)X X, ( I*DT+EN-EN1 (2) )*ENZ (2) ), I =1, NLIL) ! LIL TICKS.
!F(NLIL.EQ.9)ý4RITE(2,409)XX-ZZ,(5.*DT+EN-EN1(2))*ENZ(2) !LENGTHEN.

116 EN=EN+l.
GOT0102

11e IF(L4.NE.2)0O 'X 119
YY=9999.
LN=-LN
LL=-LL
ZZ=-ZZ

119 IF'(L4.NE.3)GO TO 100
yy=0 .
XX =9999.

100 CONTINUE
107 WRITE(2,494) !FLUSH BUFFER TO FINISH EACH CURVE.
494 FORMAT(129X/128X)

RETURN
END
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CCC ASSIGNS LOGICAL UNIT LLIN FOR PLOTS TO DEVICE TTN:
C AND INITIALIZES PLOTTER, WHICH IS CONNECTED TO TTN:
C EXAMPLE: CAL.L INPLOT(2, 'TT2:')
C WORTHIE ROUTINES WDB AND WSOP USE LUN=2

SUBROUTINE INPLOT(LUN, DEV)
CALL ASSIGN(LUNDEV,4)
WRITE(LUN,4 )27, 27

4 FORMAT(1H+Al,'.I4(!);;17:'Al,'.N;19:')
RETURN
END

!. .. '
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APPENDIX B

SIMULATION OF COLORED NOISE

The jammier signal is represented by a set of consecutive samples,

with the spacing between samples specified as an inpuL to the program.

Each sample of the jamming is a complex number, selected from a dis-

tribution with independent zero-mean Gaussian quadrature components.

The correlation between consecutive samples depends on sample spacing

and the frequency spectrum.

The effect of jammer frequency spectrum on the steady state per-

formance of a scatter canceller has been discussed in earlier reports.

When the frequency spectrum is strictly limited to a bandwidth B, a tap

spacing of 1/B in the canceller can provide arbitrarily good cancellation,

provided a sufficient number of taps is used. With a rectangular spectrum,

- - i.e., constant spectral density over the bandwidth B, consecutive samples

spaced by 1/B are independent. However, it was shown that a large number

of taps extending beyond the scatter interval are requjired with this

spectrum. In most cases of interest, the jammear bandwidth is wider than

the receiver pass band. The spectrum at the input to the adaptive processor

is then determined by the frequency response of the receiver. The

rectangular spectrum, with constant amplitude response over the pass band

and zero response outside the passband is difficult to approximate closely

with a filter. More representative filters have a varying response over

the band.

A Gaussian frequency spectrum is sometimes assumed for convenience

of analysis. It was shown in earlier reports that a high sampling rate
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is required to achieve good scatter cancellation when the canceller input

has a Gaussian spectrum. A sampling interval of roughly 1/3B is required.

A more representative spectral shape is the cosine spectrum,

CosL-r(f B]fo for If - fol < 8/2

and zero for frequencies outside this band. It was shown to be a suitable

spectrum for use in a scatter canceller. This spectrum is strictly band-

limited and does not require an excessive number of taps beyond the

scatter interval to achieve 30 dB or so of cancellation. With wide band-

width jamming, this spectrum is deter-mined by the receiver transýfer function

and can be selected to faciitate scatter cancellation.

There are two well known methods of generating a sequence of random

samples with a specified frequency spectrum. One method is to generate a

set of random samples representing the spectral components and then Fourier

transform (FFT) these samples into a corresponding set of time samples.

This algorithm generates a finite block of data, with the number of correlated

samples limited by the FFT dimensionality. The second method is to convolve

a sequence Pf independent samples with the appropriate impulse response

function for the desired spectrum. The latter method is used in the

simulation program.
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The cosine spectrum is strictly band-limited and, at base band,

has "the form

S(f) - 9-. cos If I:B/2

(1)
= 0 otherwise

One impulse response function which generates this spectrum is(ll

Q(t) = f %ýS cos 2rft df

_B/2

-6 Sc'osT(-Tf) cos 27rft df (2)

r(•) r(Bt- sin

23/2 r (Bt + 5/4) [in[(Bt-

Let {Un} denote a set of zero-mean independent Gaussian samples with

EIunI 2 = I. The set of jammer samples {Vn} with the frequency spectrum S(f)

is obtained by convolving the impulse response function with the sequence u ,

Vn = Qlmlun-m (3)

M LJBicrens dellaan, "Nouvelles Tables d'Int6grales DCfinies", 1867, lHafner

Publishing Co., Table 41.

m~~~~~ 

N
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In (3), the Qm are samples of Q(t), given by

m ,m sirn O(1

r( + 5/4)

S

The constant factor in Qm is dropped since the {Qmjare normalized later

to maintain the same average power in the {un}and {Vn}. The number of

samples per time interval I/B is denoted by I 5

The required sequence of independent samples u n is obtained by using

a random number generator and

n V'CTogTzl) exp p{2ii z2  , (5)

where zI and z2 are independent random variables uniformly distributed in

the interval (0, 1).

The sum in Eq. (4) is truncated to

M
Vn =m;-M Qlim Un-mi (6)

An easy and reasonable truncation criterion is to require that, on the

average, the power in the cut-off tail is some preassigned fraction of the

power in the truncated sum used. For the symmetrical impulse response,

the average output power from the truncated series is
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T 2 M 2

M Qo + 2 E-Qm (7)m=1

The power in the tails when the convolution is truncated at M is

SM =2 E Q 2 (8)
M mI'1+l

.A conservative bound on the power in SM is obtained by replacing the sin 2

term by unity. Also, the ratio of gamma functions is replaced by an

asymptotic expression, giving

5 <2~~ r 2 (!L )2m_!~ l~

\I(O. I -3

<2 (1 + ) O-

T 1 (9)"m=M+l s

.O3-dm 
3

< 2 (1 + CM) f - (1 + m s3f• m3 (l+ Em)

M 14

where cm is the fractional error in the asymptotic expansion. Since c

will be small compared to unity for any values of M of interest, it is

dropped.

I/

i I r I I I I I '1 1 1 I I I" I I I
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The allowable fractional error due to truncation of the impulse

response function (FERR) is specified as an input to the program. The

impulse response series of (6) is truncated when

SM
_< FERR (10)T M-

From (9), a conservative bound is

M >(FERR) TM (11)

This bound is used in the simulation. In the examples in this report,

where FERR = l0-4 and Is = 4, the value of M is 101. In these cases,

the 2-sided impulse response function used in generating a colored noise

jammer output contains 203 terms.

// --


